Thilo J. Ketschau

Georg-August-Universität Göttingen Professur für Wirtschaftspädagogik und Personalentwicklung thilo.ketschau@wiwi.uni-goetingen.de

9th International Cognitive Load Theory Conference

Cognitive Load as Criterion for Item Difficulty in Case of Complex Problem Solving.

A Quantitative Approach with Standardized Test Items

 \checkmark calculation of a complexity coefficient \rightarrow esimation of cognitve load

Working memory is limited and if the complexity of information offered to learners is not properly managed the result is lower performance because of Cognitive Overload¹

→ handling of complex problems forces the agent to "learn" the situation and to process information in the working memory

[But two theses on the limits of adaptability:

- use of action schemata by the individuum provides structure for information processing
- Π.

Attributes of Complex Problems (Funke, 1995; 2003)

 \blacklozenge

Extent / Complexity

- determined by the number of features of the system and the number of interventions and their mutual influence
- high extent means high demands on the processing capacity of the agent
- an exceeding of the processing capacity of the agent results in the need to reduce information

Cognitive Load: quantity of relevant information and quantity of distracting information

Attributes of Complex Problems (Funke, 1995; 2003)

Interconnectedness

- influencing a variable does not work in isolation but has side and distant effects
- this produces effect relationships between different components of the problem
- agents must take consider these relationships and long-term effects which requires a mental model of the problem solving situation

Cognitive Load: quantity of effect relationships

- sub-objectives (= contradictory target ratio)
- all sub-objectives have to be adressed by the agent
- agent has to evaluate information on several levels and has to build a differentiated target structure

Attributes of Complex Problems (Funke, 1995; 2003)

Dynamics

- situation develops independently from the intervention of the agent
- agent is forced to adapt and to estimate tendencies of the development of the situation

no matter of *Cognitive Load* but of cognitive closure (?)

Attributes of Complex Problems (Funke, 1995; 2003)

Non-transparency

- essential features of the situation are not accessible to the actor produced by imperfections of information about the situation, especially on variable links or consequences
- is an essential source of uncertainty of the planning and decision situation and requires active information gathering on the part of the actor

no matter of *Cognitive Load* but of the ability to handle uncertain situations

Cognitive Load: quantity of sub-objectives

Solution – Definition of a Complexity-Coefficient

Complexity-Coefficient of Item i Complexity Attribute

 $= \sum_{j=1}^{m} \frac{\left(\frac{x_j}{k_j} * \beta_j\right)}{j}$

 χ_i :

manifestation of Complexity Attribute *j* in Item *i*

highest manifestation of Complexity Attribute *j* in Sequence *s*

 $\gamma_{s} = \frac{\left(\frac{x_{1}}{k_{1}} * \beta_{1}\right) + \left(\frac{x_{2}}{k_{2}} * \beta_{2}\right) + \dots + \left(\frac{x_{j}}{k_{j}} * \beta_{j}\right)}{\dots + \left(\frac{x_{j}}{k_{j}} * \beta_{j}\right)}$

regression parameter of Complexity Attribute j as predictor for RPME σ

quantity of Complexity Attributes Sequence s

References

Dörner, D. (1987). Problemlösen als Informationsverarbeitung. Stuttgart: Kohlhammer.

Funke, J. (1995). Experimental Research on Complex Problem Solving. In: Frensch, P. & Funke, J. (Hrsg.), Complex Problem Solving: The European Perspective.

Funke, J. (2003). Problemlösendes Denken. Stuttgart: Kohlhammer.

Mayer, R. E. (1992). Thinking, Problem Solving, Cognition. New York: Freeman.

Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive Science, 12(2), 257-285.

Sweller, J. (1993). Some cognitive processes and their consequences for the organisation and presentation of information. Australian Journal of Psychology. 45(1) 1-8