

9th ICLTC = 22.06.2016

Segmenting or self-explanation prompts – the impact on learning with non-algorithmic worked examples

Katrin Schüßler, Jenna Koenen, & Elke Sumfleth

- Theoretical Framework & Research Questions
- Participants & Design
- Learning Materials
- Procedure
- Results & Discussion

UNIVERSITÄT DUISBURG ESSEN

Open-Minded

Theoretical Framework & Research Questions

- CLT (Sweller, 2005), CTML (Mayer, 2009; 2014), CATLM (Moreno, 2005)
- Worked example principle (Renkl, 2014; Sweller & Cooper, 1985)
 - → reduce extraneous processing
 - → foster generative processing (Renkl, 2014)
- Segmenting principle (Gerjets, Scheiter, & Catrambone, 2006; Mayer, 2009; Renkl, 2013)
 - → manage essential processing
 - → pausing and temporal cueing (Spanjers, van Gog, Wouters, & van Merriënboer, 2012)
- Self-explanation principle (Renkl, 2014; Roy & Chi, 2005; Wylie & Chi, 2014)
 - → foster generative processing
 - → double edged effect of conceptual oriented prompting (Berthold, Röder, Knörzer, Kessler, & Renkl, 2011)

Non-algorithmic Worked Examples

DUISBURG ESSEN

UNIVERSITÄT

Open-Minded

• CLT (Sweller, 2014), CTML (Mayer, 2009; 2014),

- Worked example principle (Renkl, 2014
 - → reduce extraneous processing
 - → foster generative processing (Renkl, 2014
- Segmenting principle (Gerjets, Scheiter, & C
 - → manage essential processing
 - → pausing and temporal cueing (Spanjers, V
- Self explanation principle (Renkl, 2014;
 - → foster generative processing
 - → double edged effect of conceptual orie Kessler, & Renkl, 2011)

1st Research Question:

How do

- segmentation (yes/no)
- prompting (yes/no)

influence

- cognitive load
- affective variables
- learning outcomes

when learning with nonalgorithmic worked examples?

- one kind of short tasks (weekday problems)
- comparing ratings for each problem to one single rating at the end
- 1st Study (van Gog, Kirschner, Kester, & Paas, 2012)
 - invested mental effort (Paas, 1992)
- \rightarrow single ratings are higher than the average of multiple ratings
- 2nd Study (Schmeck, Opfermann, van Gog, Paas, & Leutner, 2015)
 - invested mental effort (Paas, 1992)
 - perceived task difficulty (Kalyuga, Chandler, Tuovinen, & Sweller, 2001)
 - perceived interest ("I like such puzzles and riddles" (FAM), Rheinberg, Vollmeyer, & Burns, 2001)
 - motivation ("I would work on such problems in my free time" (FAM), Rheinberg et al., 2001)
- \rightarrow single ratings on cognitive load are higher than the average of multiple ratings
- → single ratings on affective variables do not differ from the average of multiple ratings

Multiple Ratings on Cognitive Load and Affective Variables

one kind of short tasks (weekday proble
comparing ratings for each problem to q

1) van Gog, Kirschner, Kester, & Paas, 20
 • invested mental effort (Paas, 1992)
 → single ratings are higher than the average of

2) Schmeck, Opfermann, van Gog, Paas,

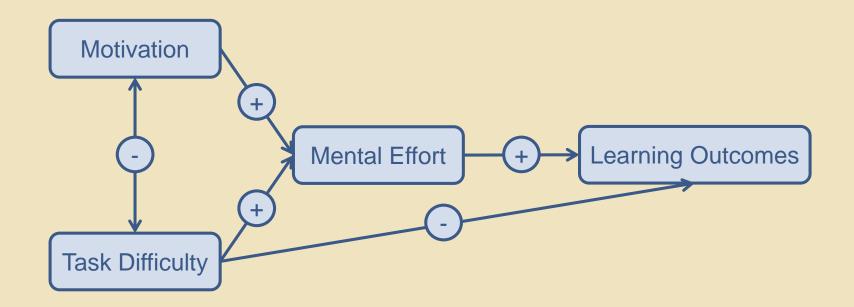
- invested mental effort (Paas, 1992)
- perceived task difficulty (Kalyuga et al., 2001)
- perceived interest ("I like such puzzles and riddles"
- motivation ("I would work on such problems in my free
- → single ratings on cognitive load are higher t
 → single ratings on affective variables do not ratings

2nd Research Question:

How do

- invested mental effort
- perceived task difficulty
- motivation
- perceived understanding

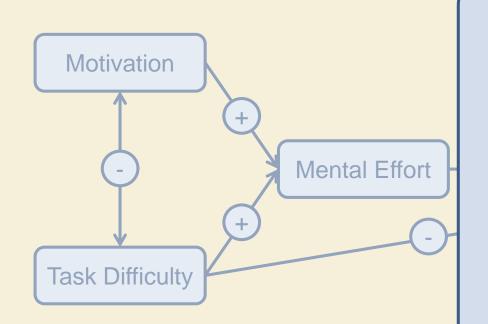
develop during studying one complex task?


UNIVERSITÄT DUISBURG ESSEN

Open-Minded

Relation of Cognitive and Affective Variables and Learning Outcomes

UNIVERSITÄT DUISBURG ESSEN


Open-Minded

Stebner, Dicke, Kühl, Thillmann, Wirth, & Leutner, 2015

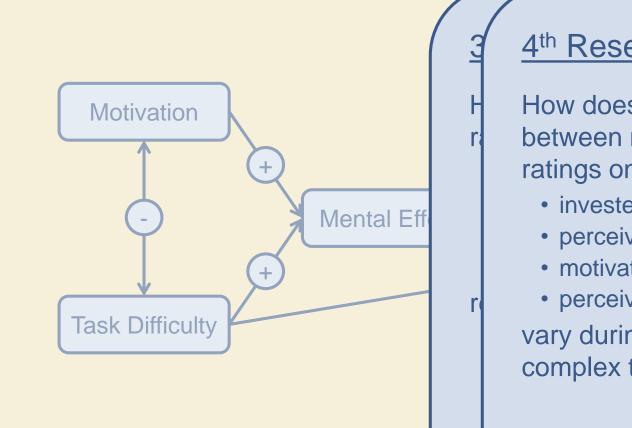
Relation of Cognitive and Affective Variables and Learning Outcomes

Open-Minded

Stebner, Dicke, Kühl, Thillmann, Wirth, & Leutner, 2015

3rd Research Question:

How do multiple subjective ratings on


- perceived task difficulty
- invested mental effort
- motivation
- perceived understanding

relate to learning outcomes?

Relation of Cognitive and Affective Variables and Learning Outcomes

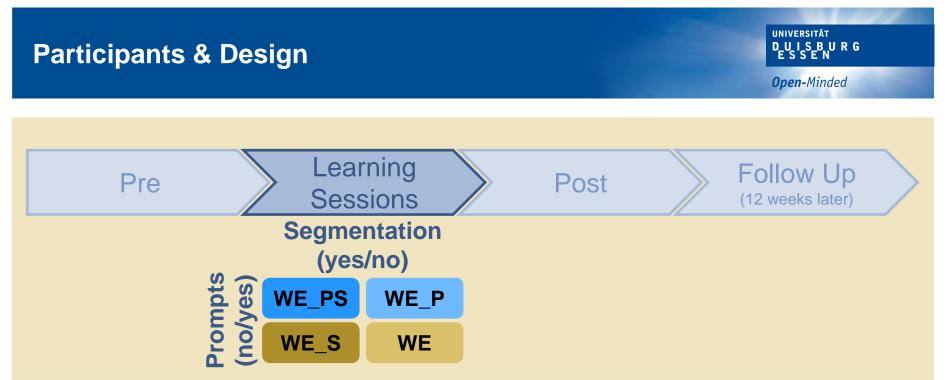
UNIVERSITÄT UISBURG

Open-Minded

Stebner, Dicke, Kühl, Thillmann, Wirth, & Leutner, 20

4th Research Question:

How does the relation between multiple subjective ratings on

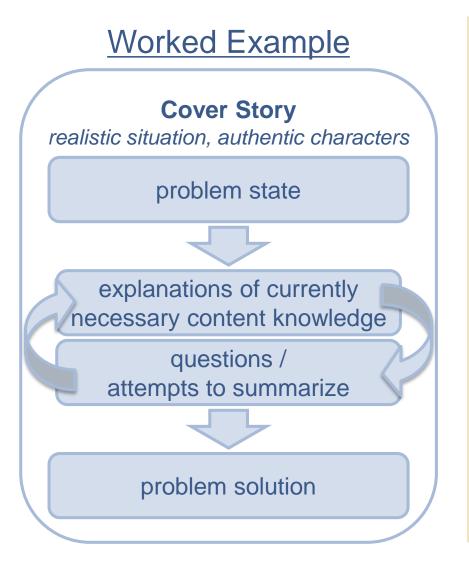

- invested mental effort
- perceived task difficulty
- motivation
- perceived understanding

vary during studying one complex task?

UNIVERSITÄT DUISBURG ESSEN

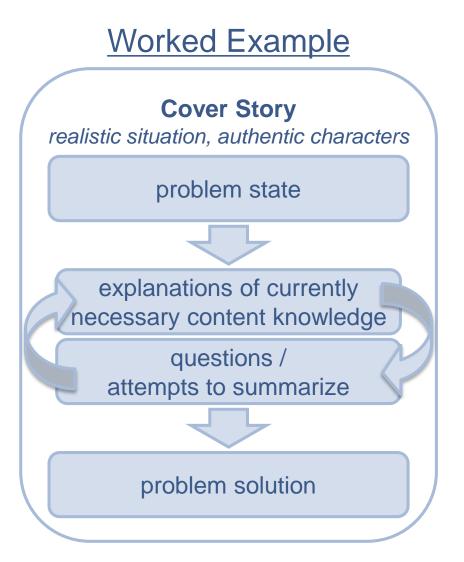
Open-Minded

Participants & Design


- 3 learning sessions
 - 1 worked example
 - 60 minutes study time (maximum)
- participants
 - 436 students (9th or 10th grade, German secondary schools (*"Realschule"* & *"Gymnasium"*), 49,8 % ♀, M_{age} = 14.17, SD = .63, randomly assigned to conditions)
 - low prior knowledge on acids (expertise reversal principle, Kalyuga, 2014)

UNIVERSITÄT DUISBURG ESSEN

Open-Minded


Learning Materials

Learning Materials

- paper-based
- content: acids, development of a first conceptual understanding (Reimann, 1997; Stark, 1999)
- personalization principle (Mayer, 2009)
- model-observer similarity principle (Renkl, 2013)
- explanation-help principle (Berthold & Renkl, 2010; Stark, 1999; Renkl, 2013; 2014)
- studying-errors principle (Große & Renkl 2004; 2007; Renkl, 2013; 2014)
- multimedia principle (Mayer, 2009)
- spatial contiguity principle (Mayer, 2009)
- signaling principle, i. e. color coding (Kalyuga, Chandler, & Sweller, 1999; Mayer, 2009; Renkl, 2014; van Gog, 2014)
- example-set principle (Renkl, 2014)

Learning Materials

- Offline prompt (Chi, De Leeuw, Chiu, & LaVancher, 1994)
- 2583-3967 words
- 14-33 pictures
- segmenting presenting small units of information on one page

prompting

asking learners to actively use parts of the newly acquired knowledge (anticipative reasoning) (Stark, 1999)

UNIVERSITÄT DUISBURG ESSEN

Open-Minded

Procedure

Day 1 (pre-test)

- demographic questionnaire
- prior knowledge
 paper-pencil
 33 Multiple-Choice Single-Select Items

Day 2-4 (learning sessions)

- perceived task difficulty (Kalyuga et al., 2001)
- invested mental effort (Paas, 1992)
- perceived understanding
- motivation
 - 7-point scales
- learning time

Day 5 (post-test)

learning outcomes

"Please estimate how well you understood the last text passage."

not at all very well 1 2 3 4 5 6 7

Day 1 (pre-test)

- demographic questionnaire
- prior knowledge
 paper-pencil
 33 Multiple-Choice Single-Select Items

Day 2-4 (learning sessions)

- perceived task difficulty (Kalyuga et al., 2001)
- invested mental effort (Paas, 1992)
- perceived understanding
- motivation
 - 7-point scales
- learning time

Day 5 (post-test)

learning outcomes

"Please estimate how well you understood the last text passage."

 not at all
 very well

 1
 2
 3
 4
 5
 6
 7

"I enjoyed reading the last text passage."

the reve is true	erse					applies	
1	2	3	4	5	6	7	

Day 1 (pre-test)

- demographic questionnaire
- prior knowledge
 paper-pencil
 33 Multiple-Choice Single-Select Items

Day 2-4 (learning sessions)

- perceived task difficulty (Kalyuga et al., 2001)
- invested mental effort (Paas, 1992)
- perceived understanding
- motivation
 - 7-point scales
- learning time

Day 5 (post-test)

learning outcomes

	Function	Predomi- nantly	Prompts	Seg- ments
R1	introduction	cover story	0	1-2
R2	problem	cover story	1	1-2
R3	of content	content knowledge	0	3-10
R4			1-2	1-3
R5	explanation of content knowledge	content knowledge	2-4	9-24
R6	reference to the problem	both	0	3-8
R7	decay	cover story	0	2-5

Day 1 (pre-test)

- demographic questionnaire
- prior knowledge
 paper-pencil
 33 Multiple-Choice Single-Select Items

Day 2-4 (learning sessions)

- perceived task difficulty (Kalyuga et al., 2001)
- invested mental effort (Paas, 1992)
- perceived understanding
- motivation 7-point scales
- learning time

Day 5 (post-test)

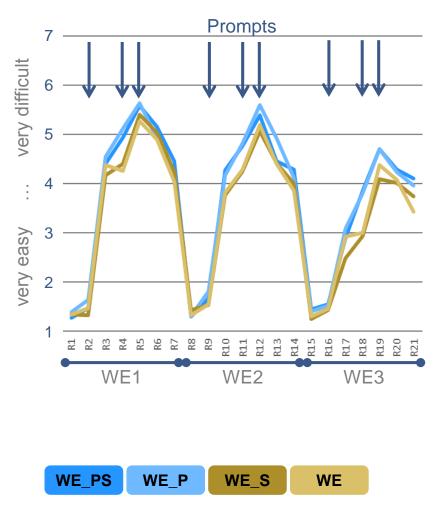
learning outcomes

UNIVERSITÄT DUISBURG ESSEN

Open-Minded

Results

Content Knowledge



Content Knowledge Growth

- 33 Items, Multiple-Choice Single-Select
 α_{pre} = .403, α_{post} = .822
- <u>t-test pre-post (dependent)</u>
 t(435) = 16.59, p < .001, d = 0.847
- <u>ANOVA & Post-Hoc (LSD)</u> no differences between conditions

Perceived Task Difficulty

Perceived Task Difficulty

• <u>*RM_ANOVA & Post-Hoc (LSD)</u></u> F(3,334) = 2.79, p = .040, \eta_p^2 = .024</u>*

 $WE_PS > WE_S (p = .025) \text{ and } WE (p = .028)$

Combining prompts and segmentation increases task difficulty compared to conditions without prompts

1st Research Question:

How do

- segmentation
- prompting

influence

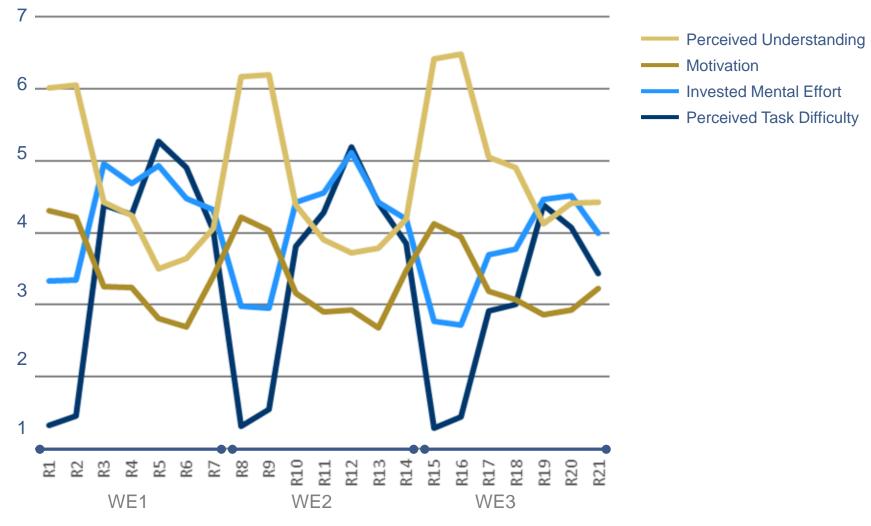
- learning
- learning outcomes

from non-algorithmic worked examples?

- learning outcomes
 - significant growth of content knowledge no differences between conditions
- learning
 - prompting increases
 - perceived task difficulty
 - learning time
 - prompting and segmentation do not affect
 - invested mental effort
 - motivation
 - perceived understanding
 - instructional efficiency (Paas & van Merriënboer, 1993; van Gog & Paas, 2008)

neither prompting nor segmentation improved learning

Development of Multiple Cognitive and Affective UNIVERSITÄT DUISBURG Ratings **Open-**Minded **Development of Multiple Ratings** Perceived Understanding Motivation 6 Invested Mental Effort Perceived Task Difficulty 5 4 3 2

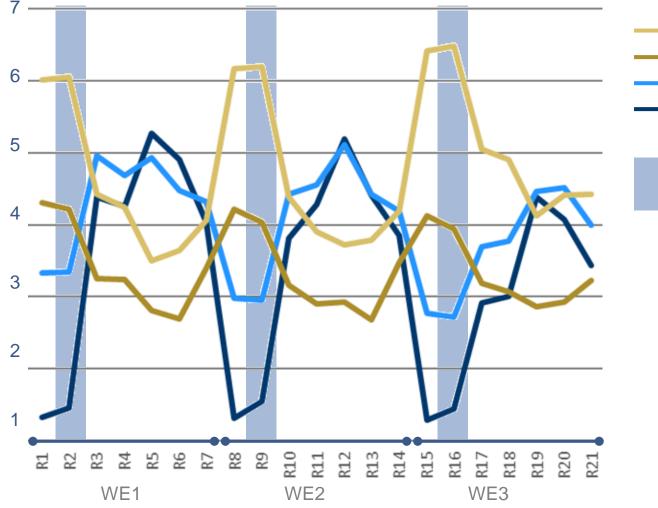

Development of Multiple Cognitive and Affective UNIVERSITÄT DUISBURG Ratings **Open-**Minded **Development of Multiple Ratings** Perceived Understanding Motivation 6 Invested Mental Effort Perceived Task Difficulty 5 4 3 2 R12 R13 R14 R10 R11 R3 33 R6 88 R9 2 22 2 2 WE1 WE2

```
22.06.2016
```

Development of Multiple Cognitive and Affective Ratings

Open-Minded

Development of Multiple Ratings

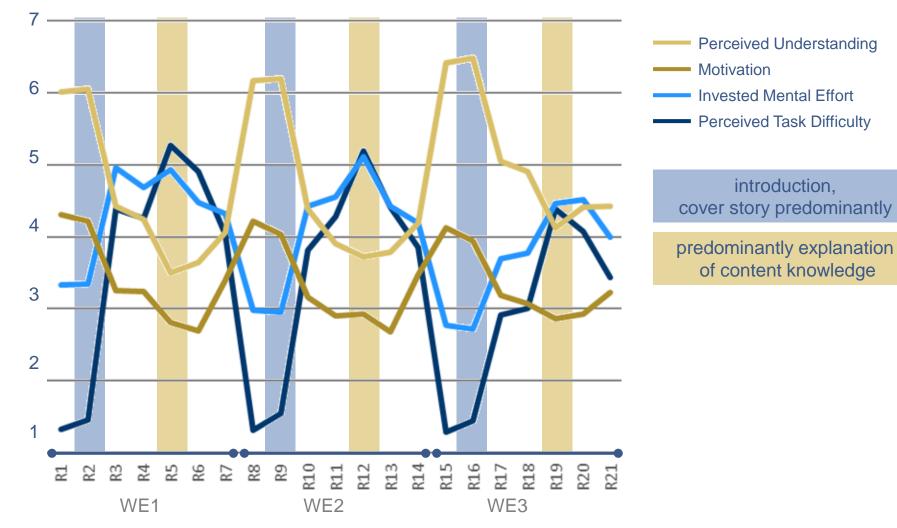


Schüßler, Koenen, & Sumfleth

22.06.2016

Development of Multiple Cognitive and Affective Ratings

Development of Multiple Ratings


Perceived Understanding

- Motivation
- Invested Mental Effort
- Perceived Task Difficulty

introduction, cover story predominantly


Development of Multiple Cognitive and Affective Ratings

Development of Multiple Ratings

Development of Multiple Cognitive and Affective Ratings

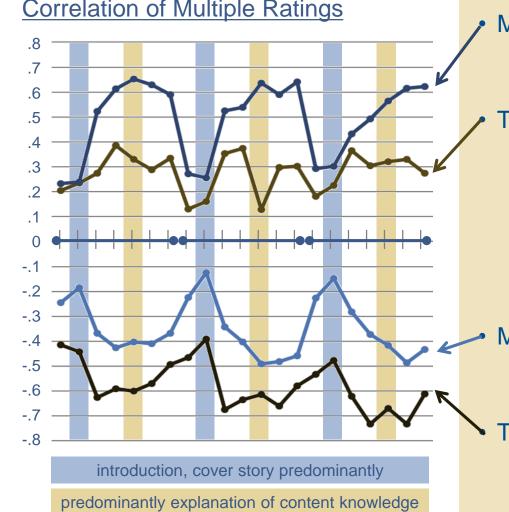
Development of Multiple Ratings

learning outcomes					
perceived	M _{R2}	230**			
task difficulty	M _{R5}	336**			
mativation	M _{R2}	.148**			
motivation	M _{R5}	.390**			
perceived	M _{R2}	.314**			
understanding	M _{R5}	.574**			
invested	M _{R2}	181**			
mental effort	M _{R5}	.108 [*]			
$N = 338, ** p \le 0.01, * p \le 0.05$, Pearson-Correlation					

2nd & 3rd Research Question:

How do multiple subjective ratings on

- invested mental effort
- perceived task difficulty
- motivation
- understanding


develop during studying one complex task?

relate to learning outcomes?

- differences between ratings (R2 and R5)
- contrary developments for cognitive load and affective ratings
- stronger relations to learning outcome for later ratings (R5) on task difficulty, motivation and understanding
- relation between mental effort and learning outcomes changes from negative (R2) to positive (R5)

Development of the Relation of Cognitive and Affective Ratings

Open-Minded

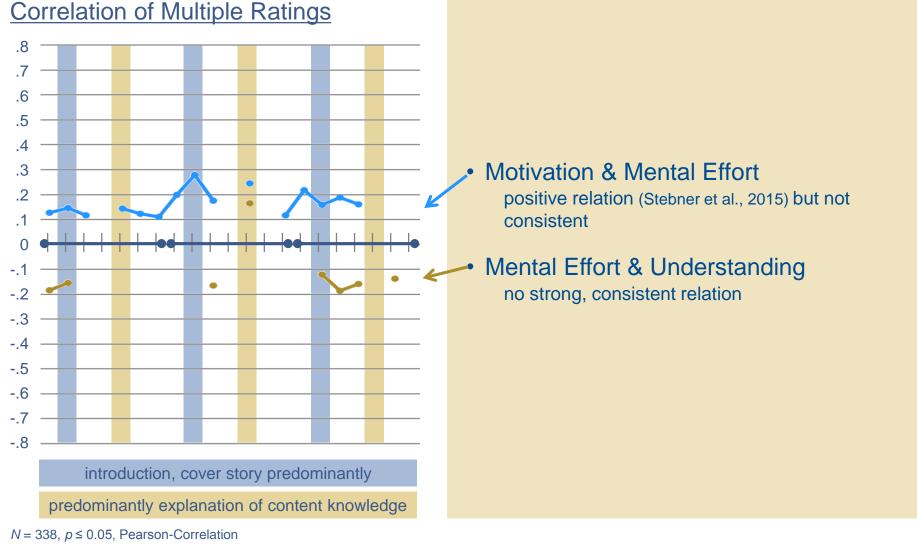
Correlation of Multiple Ratings

N = 338, $p \le 0.05$, Pearson-Correlation

Schüßler, Koenen, & Sumfleth

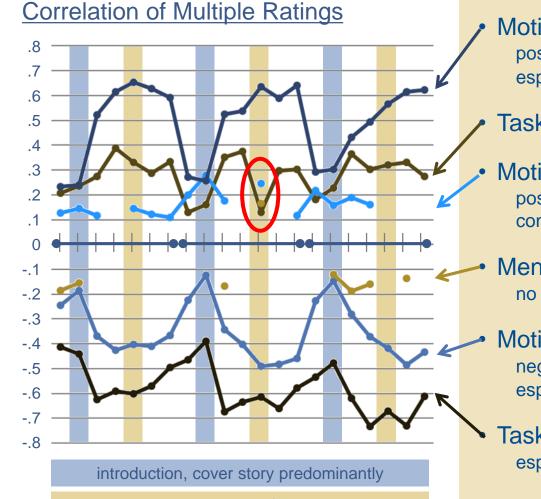
Motivation & Understanding positive relation especially true when cognitive load is high

Task Difficulty & Mental Effort


Motivation & Task Difficulty negative relation (Stebner et al., 2015) especially true when cognitive load is high

Task Difficulty & Understanding especially true when cognitive load is high

Development of the Relation of Cognitive and Affective Ratings


UNIVERSITÄT DUISBURG ESSEN

Open-Minded

Development of the Relation of Cognitive and Affective Ratings

Open-Minded

predominantly explanation of content knowledge

N = 338, $p \le 0.05$, Pearson-Correlation

Motivation & Understanding positive relation especially true when cognitive load is high

- Task Difficulty & Mental Effort
- Motivation & Mental Effort positive relation (Stebner et al., 2015) but not consistent
- Mental Effort & Understanding no strong, consistent relation

Motivation & Task Difficulty negative relation (Stebner et al., 2015) especially true when cognitive load is high

 Task Difficulty & Understanding especially true when cognitive load is high

4th Research Question:

How does the relation between multiple subjective ratings on

- invested mental effort
- perceived task difficulty
- motivation
- understanding

vary during studying one complex task?

consistent relation over 21 ratings between

- motivation and understanding
- task difficulty and mental effort
- motivation and task difficulty
- task difficulty and understanding
- no consistent relation over 21 ratings between
 - mental effort and motivation (15/21)
 - mental effort and understanding (8/21)
 - the significant relation is missing especially at points of high task difficulty

one conspicuous point

- mental effort and task difficulty decreases
- mental effort and motivation increases
- mental effort and understanding changes from negative to positive

Discussion

- Neither Prompting nor Segmentation fostered learning
 - Prompts lead to an increase of cognitive load (overload?) and learning time (extraneous processing?)
 - Segmentation was self-paced, multiple-ratings provide segmentation for the nosegmenting conditions
- Classroom setting
- Design principles are mainly proved for algorithmic examples and interrelations of the design principles are only partly examined (Renkl, 2014)
- Multiple subjective ratings
 - Contrary developments for cognitive load and affective ratings within one complex task
 - Changing relation between mental effort and learning outcomes from negative (R2) to positive (R5)
 - No consistent relation between mental effort and motivation / understanding (at points of high task difficulty)

Thank you,

for your Attention!

UNIVERSITÄT DUISBURG ESSEN

Open-Minded

Müller-Reitz-Stiftung

https://www.uni-due.de/chemiedidaktik/09_sonstiges_downloads_loesungsbeispiele.php

UNIVERSITÄT DUISBURG ESSEN

Open-Minded

References

References

Open-Minded

Berthold, K. & Renkl, A. (2010). How to foster active processing of explanations in instructional communication. *Educational Psychology Review*, 22(1), 25-40. Berthold, K., Röder, H., Knörzer, D., Kessler, W., & Renkl., A. (2011). The double-edged effects of explanation prompts. *Computers in Human Behavior*, 27, 69-75. Chi, M. T. H., De Leeuw, N., Chiu, M.-H., & LaVancher, C. (1994). Eliciting self-explanations improves understanding. *Cognitive Science*, *18*(3), 439-477.

Gerjets, P., Scheiter, K. & Catrambone, R. (2006). Can learning from molar and modular worked examples be enhanced by providing instructional explanations and prompting self-explanations? *Learning and Instruction*, *16*(2), 104-121.

Gog, T. van, Kirschner, F., Kester, L. & Paas, F. (2012). Timing and frequency of mental effort measurement: Evidence in favor of repeated measures. *Applied Cognitive Psychology*, *26*, 833-839.

Gog, T. van & Paas, F. (2008). Instructional efficiency: Revisiting the original construct in educational research. *Educational Psychologist, 43*, 16-26.

Große, C. S. & Renkl, A. (2004). Learning from worked examples: What happens if errors are included? In P. Gerjets, J. Elen, R. Joiner & P. Kirschner (Eds.), *Instructional design for effective and enjoyable computer-supported learning*, (356-364), Tübingen, Germany: Knowledge Media Research Center.

Große, C. S. & Renkl, A. (2007). Finding and Fixing errors in worked examples: Can this foster learning outcomes?, Learning and Instruction, 17, 612-634.

Kalyuga, S. (2014). The expertise reversal principle in multimedia learning. In R. E. Mayer (Ed.), *Cambridge Handbook of Multimedia Learning. Second Edition.* (576-598). Cambridge, UK: Cambridge University Press.

Kalyuga, S., Chandler, P., Tuovinen, J. & Sweller, J. (2001). When problem solving is superior to studying worked examples. *Journal of educational psychology*, 93(3), 579-588.

Kalyuga, S., Chandler, P., & Sweller, J. (1999). Managing split-attention and redundancy in multimedia instruction. Applied Cognitive Psychology, 13, 351-371.

Mayer, R. E. (2009). Multimedia Learning - Second Edition. New York: Cambridge University Press.

Mayer, R. (2014). Cognitive Theory of Multimedia Learning. In: R. E. Mayer (Ed.), *Cambridge Handbook of multimedia learning – second Edition,* (43-71). Cambridge, UK: Cambridge University Press.

Moreno, R. (2005). Instructional Technology – Promise and Pitfalls. In: In Pyllikzillig, L. M., Bodvarsson, M., & Bruning, R. (Eds.), Technology-Based Education: Bringing Researchers and Practitioners Together (pp. 1-19), Greenwich, CT: Information Age.

Paas, F. (1992). Training strategies for attaining transfer of problem-solving skill in statistics: A cognitive load approach. *Journal of Educational Psychology*, 84, 429-434.

Paas, F. G. W. C & van Merrienboer, J. J. G. (1993). The Efficiency of Instructional Conditions: An Approach to Combine Mental Effort and Performance Measures. Human Factors, 35(4), p. 737-743.

Reimann, P. (1997). Lernprozesse beim Wissenserwerb aus Beispielen: Analyse, Modellierung, Förderung. Bern, CH: Huber.

Renkl, A. (2014). The Worked Example Principle in Multimedia Learning. In: R. E. Mayer (Ed.), *Cambridge Handbook of multimedia learning – second Edition*, (391-412). Cambridge, UK: Cambridge University Press.

Renkl, A. (2014). Toward an Instructionally Oriented Theory of Example-Based Learning. Cognitive Science, 38(1), 1-37.

References

Rheinberg, F., Vollmeyer, R. & Burns, B.D. (2001). FAM: Ein Fragebogen zur Erfassung aktueller Motivation in Lern- und Leistungssituationen. *Diagnostika* 2, 57-66. Roy, M. & Chi, M. T. H. (2005). The self-explanation principle in multi-media learning. In: R. E. Mayer (Ed.), *Cambridge Handbook of multimedia learning*, (271-287). Cambridge, UK: Cambridge University Press.

Schmeck, A., Opfermann, M., Gog, T. van, Paas, F. & Leutner, D. (2015). Measuring cognitive load with subjective rating scales during problem solving: Differences between immediate and delayed ratings. *Instructional Science*, *43*, 93-114.

Spanjers, I.E.A., Gog, T. van & Merrienboer, J.J.G. van (2012). Segmentation of worked examples: Effects on cognitive load and learning. *Applied Cognitive Psychology*, *26*, 352-358.

Stark, R. (1999). Lernen mit Lösungsbeispielen. Einfluss unvollständiger Lösungsbeispiele auf Beispielelaboration, Lernerfolg und Motivation. Göttingen: Hogrefe.

Stebner, Dicke, Kühl, Leutner, & Wirth (June, 2015). The interplay between topic interest, perceived task difficulty, invested mental effort, and performance when learning with multimedia – validation of a theoretical model. Annual International Cognitive Load Theory Conference (ICLTC - 2015), Fort Collins, USA.

Sweller, J. (2005). Implications of Cognitive Load Theory for Multimedia Learning. In: R. E. Mayer (Ed.), *The Cambridge Handbook of Multimedia Learning* (19-30). New York, Cambridge University Press.

Sweller, J. & Cooper, G. A. (1985). The Use of Worked Examples as a Substitute for Problem Solving in Learning Algebra. Cognition and Instruction, 2(1), 59-89.

Van Gog, T. (2014). The signaling (or Cueing) principle in Multimedia Learning. In: R. E. Mayer (Hrsg.), *Cambridge Handbook of multimedia learning. Second Edition* (p. 263-278). Cambridge, UK: Cambridge University Press

Wylie, R., & Chi, M. T. H. (2014). The Self-Explanation Principle in Multimedia Learning. In: R. E. Mayer (Ed.), *Cambridge Handbook of multimedia learning – second Edition*, (413-432). Cambridge, UK: Cambridge University Press.