

Solving the Gender Difference in Instructional Animation Research

Never Stand Still

Mona Wong, Juan C. Castro-Alonso, Paul Ayres and Fred Paas

The 9th Cognitive Load Theory Conference Bochum, Germany 22nd -24th June, 2016

Animations: Good or Bad?

Good

Statistics (Wender & Muehlboeck, 2003)

Physics (Bétrancourt, Dillenbourg, & Clavien, 2008; Rebetez, Bétrancourt, Sangin, & Dillenbourg, 2009; Rieber, 1990a, b, 1991a, b)

Zoology (Pfeiffer, Scheiter, Kühl, & Gemballa, 2011)

Geometry (Korakakis, Pavlatou, Palyvos, & Spyrellis, 2009; Thompson & Riding, 1990)

Various motor tasks (Akinlofa, Holt, & Elyan, 2013; Arguel & Jamet, 2009; Ayres, Marcus, Chan, Qian, 2009; Castro-Alonso, Ayres, & Paas, 2015; Garland & Sánchez, 2013; Michas and Berry, 2000; Wong et al. 2009)

No different

Physics (in adults, see Rieber, 1996; Rieber, Boyce, & Assad, 1990; Bétrancourt, Dillenbourg, & Clavien, 2008)

Social movements

(Morrison & Tversky, 2001)

Various motor tasks

(Watson, Butterfield, Curran, & Craig, 2010)

Bad

Statistics (Scheiter, Gerjets, & Catrambone, 2006)

Physics (in adults, see Rieber, 1996; Rieber, Boyce, & Assad, 1990)

Social movements (Morrison & Tversky, 2001)

Machinery & Geoscience

(Mayer, Hegarty, Mayer, & Campbell, 2005)

Physiology (Jones & Scaife ,2000; Koroghlanian & Klein, 2004)

Abstract symbols (Castro-Alonso, Ayres & Paas, 2014b)

Animations: Good or Bad?

Good

- General principles (e.g. more realistic, usercontrol, segmentation, modality effect)
- Human movement effect
 - Activate mirror neurons
 - Observational learning
 - Biologically primary skill (Evaluations)

Bad

• The transient information effect

Animation and gender

- Jacek (1997): Females learn better with animation than static picture; but males learn the same with both animation and static picture
- Yezierski & Birk (2006): males outperformed females in a pre-test, but not after the animation intervention
- Falvo and Suits (2009): female outperformed male in animation group
- Sanchez & Wiley (2010): male significantly outperform female with static picture when learning chemistry but no difference with animation

Animation and gender – Previous experiments

 Results consistently indicate that there is a gender difference in learning with animations and static pictures.

Preliminary Result -

UNSW

 Interaction between gender and presentation type

2nd atte	empt	Iranster	task
10.98	1921	3	$- \alpha$
		5 4.95	- 8.09
9.37		.5 -	
	845	4	
		3	328
Mole	Femde	Male	Fernels
	State Picture		Static Pature

Animation is more superior for female, whereas static picture work: slightly better for male

Females benefit more from animations!

Reason: (possibly) Spatial ability

Gender difference in spatial ability

- Males: *mental rotation ability, spatial perception* and *spatial orientation*
 Performed better at an *object transformation task*
- Females \uparrow recalling landmarks, street names, and reporting route strategies
 - Performed better at an *object location memory task*

(e.g. Choi & L'Hirondelle, 2005; Eals & Silverman, 1994; McBurney, Gaulin, Devineni, & Adams, 1997; Silverman, Choi, & Peters, 2007; Silverman & Eals, 1992)

• Neuroscience evidence also indicate that males and females (who performed at a similar standard in spatial test) have different cortical activation pattern (Jordan, Wüstenberg, Heinze, Peters, & Jäncke, 2002; Weiss et al. 2003)

Evolutionary perspective

- Evolutionary Theory (Darwin,1871): variation, natural selection & sexual selection
 - Sexual selection: intrasexual competition + intersexual selection
- Silverman and Eals (1992) proposed Hunter-Gatherer theory of spatial sex differences
 - Male-bias skills (e.g. mental rotations): orient oneself in relation to prays
 - Female-bias skills (e.g. object-location memory): rapidly remember the content array and location for foraging.
- Geary (1995, p. 291) argued that the gender difference in 3dimensional spatial ability was a result of sexual selection
 - classroom learning are mostly 2-D and thus gender difference is smaller

Questions

1. Can spatial ability predict learners' performance when learning with instructional animations?

2. Does spatial ability influence the performance of males and females differently when learning with instructional animations?

Empirical evidence

Methodology – Materials & conditions

	Experiment 1	Experiment 2	Experiment 3	Experiment 4	
Learning conditions	ř.	i sta	ř.		
	1 2 3 4 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				
Performing conditions			1 2 3 4 5 6 7 8 0 10 11 12 13 14 15 0 10 11 12 13 14 15		

Methodology – Materials & conditions

Methodology – Procedure

Regression Results

Regression

- Dependent variables
 - Performance results: 1st attempt, 2nd attempt and transfer task
- Independent variables (highly correlated with the performance)
 - Animated-static condition
 - Spatial ability results (CRT/MRT/Corsi)
 - Self-reported spatial ability results
 - Frequency learning with animations/static pictures

Male		Female
Nil	Task 1	1-factor model ($p = .081$) Self-perception
	Task 2	1-factor model ($p = .004$) Self-perception
	Transfer	1-factor model ($p = .009$) CRT

Male		Female	
1-factor model ($p = .008$)	Task 1		
CRT		NUI	
1-factor model ($p = .002$)	Task 2	INII	
CRT			
3-factor model ($p = .040$)	Transfer	1-factor model ($p = .068$)	
CRT + self-perception+ animation-static		animation-static condition	

Male		Female
Nil	Task 1	1-factor model (<i>p</i> = .039) <i>animation-static</i> <i>condition</i>
2-factor model (p = .007) Self-mental + CRT	Task 2	Nil
Nil	Transfer	1-factor model (<i>p</i> = .047) <i>animation-static</i> <i>condition</i>

Male		Female
1-factor model ($p = .020$)	Task 1	3-factor model (<i>p</i> < .001)
MRT		freq with animation+ gesturing + Corsi
1-factor model ($p < .001$)	Task 2	3-factor model ($p = .045$)
MRT		freq with animation+ freq with picture+ Corsi
1-factor model ($p = .004$)	Transfer	1-factor model ($p < .001$)
MRT		freq with picture

Overall Results

	Task 1	Task 2	Transfer		Task 1	Task 2	Transfer
Exp 1		Nil		Exp 1	Self- perception	Self- perception	CRT
Exp 2	CRT	CRT	CRT + Self- perception + animation	Exp 2	Ν	lil	animation- static
Exp 3	Nil	Self- mental + CRT	Nil	Ехр З	animation- static	Nil	animation- static
Exp 4	MRT	MRT	MRT	Exp 4	freq with animation + gesturing + Corsi	freq with animation + freq with picture + Corsi	freq with picture

Overall Results

	Task 1	Task 2	Transfer		Task 1	Task 2	Transfer
Exp 1		Nil		Exp 1	Subjective	Subjective	Objective
Exp 2	Objective	Objective	Objective + Subjective + animation	Exp 2	Ν	lil	animation- static
Exp 3	Nil	Subjective + Objective	Nil	Exp 3	animation- static	Nil	animation- static
Exp 4	Objective	Objective	Objective	Exp 4	freq with animation + gesturing + Corsi	freq with animation + freq with picture + Corsi	freq with picture

Conclusion

1. Can spatial ability predict learners' performance when learning with instructional animations?

Yes and No

 Predictors for males and females performance are different Males: objective assessments (e.g. CRT & MRT)
 Females: subjective assessment (self-rated spatial ability) and experience using animations/static pictures

Conclusion

2. Does spatial ability influence the performance of males and females differently when learning with instructional animations?

Unanswered Object-location memory (Corsi) was used in only 1 out of 4 experiments

Discussion

• In many studies (e.g. Castro-Alonso, 2013, 2015): F>M

- Bias in gender
- Bias in material used (Lego: Object location memory task)
- Implications
 - Different measures of spatial ability may be required according to gender
 - Experimental setting: balance participants gender and be careful with material design

Reference

- Akinlofa, O. R., Holt, P. O. B., & Elyan, E. (2013). Effect of interface dynamism on learning procedural motor skills. *Interacting with Computers*, 25(3), 259–269. doi: 10.1093/iwc/iws015
- Arguel, A., & Jamet, E. (2009). Using video and static pictures to improve learning of procedural contents. *Computers in Human Behavior,* 25, 354–350. doi: 10.1016/j.chb.2008.12.014
- Ayres, P., Marcus, N., Chan, C., & Qian, N. (2009). Learning hand manipulative tasks: When instructional animations are superior to equivalent static representations. Computers in Human Behavior, 25, 348–353.
- Bétrancourt, M., Dillenbourg, P., & Clavien, L. (2008). Display of key pictures from animation: Effects on learning. In J.-F. Rouet, R. Lowe & W. Schnotz (Eds.), Understanding multimedia documents: Springer
- Castro-Alonso, J. C., Ayres, P., & Paas, F. (2015a). Animations showing Lego manipulative tasks: Three potential moderators of effectiveness. *Computers & Education,* 85, 1–13. doi: 10.1016/j.compedu.2014.12.022
- Ekstrom, R. B., French, J. W., Harman, H. H., & Dermen, D. (1976). Manual for kit of factor-referenced cognitive tests.
- Garland, T. B., & Sánchez, C. A. (2013). Rotational perspective and learning procedural tasks from dynamic media. *Computers & Education, 69*, 31–37. doi: 10.1016/j.compedu.2013.06.014
- Korakakis, G., Pavlatou, E. A., Palyvos, J. A., & Spyrellis, N. (2009). 3D visualization types in multimedia applications for science learning: A case study for 8th grade students in Greece. *Computers & Education, 52*, 390–401. doi: 10.1016/j.compedu.2008.09.011
- Morrison, J. B., Tversky, B., & Betrancourt, M. (2000). Animation: Does It Facilitate Learning? Paper presented at the Smart Graphics AAAI Spring Symposium, Stanford, CA, USA.
- Pfeiffer, V. D. I., Scheiter, K., Kühl, T., & Gemballa, S. (2011). Learning how to identify species in a situated learning scenario: Using dynamic-static visualizations to prepare students for their visit to the aquarium. EURASIA Journal of Mathematics, Science & Technology Education, 7(2), 135–147.
- Rebetez, C., Bétrancourt, M., Sangin, M., & Dillenbourg, P. (2009). Learning from animation enabled by collaboration. *Instructional Science*, 38(5), 471–485. doi: 10.1007/s11251-009-9117-6
- Rieber, L. P. (1990a). Animation in computer-based instruction. Educational Technology Research and Development, 38(1), 77–86.
- Rieber, L. P. (1990b). Using computer animated graphics in science instruction with children. Journal of Educational Psychology, 82(1), 135–140.
- Rieber, L. P. (1991a). Animation, incidental learning, and continuing motivation. Journal of Educational Psychology, 83(3), 318–328.
- Rieber, L. P. (1991b). Effects of visual grouping strategies of computer-animated presentations on selective attention in science. Educational Technology Research and Development, 39(4), 5–15.
- Sanger, M. J., Phelps, A. J., & Fienhold, J. (2000). Using a computer animation to improve students' conceptual understanding of a can-crushing demonstration. *Journal of Chemical Education*, 77(11), 1517—1520.
- Schwan, S., & Riempp, R. (2004). The cognitive benefits of interactive videos: learning to tie nautical knots. *Learning and Instruction, 14*, 293–305. doi: 10.1016/j.learninstruc.2004.06.005
- Thompson, S. V., & Riding, R. J. (1990). The effect of animated diagrams on the understanding of a mathematical demonstration in 11- to 14-year-old pupils. *British Journal of Educational Psychology*, *60*(1), 93–98. doi: 10.1111/j.2044-8279.1990.tb00925.x
- Wender, K. F., & Muehlboeck, J. S. (2003). Animated diagrams in teaching statistics. Behaviour Research Methods, Instruments, & Computers, 35(2), 255-258.

Wong, A., Marcus, N., Ayres, P., Smith, L., Cooper, G. A., Paas, F., & Sweller, J. (2009). Instructional animations can be superior to statics when learning human motor skills. Computers in Human Behavior, 25, 339–347.

